友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!
29书城 返回本书目录 加入书签 我的书架 我的书签 TXT全本下载 『收藏到我的浏览器』
我的美母教师 | 乡村精品合集 | 乡村活寡 | 乡村欲爱 | 乡村春潮 | 乡村花医 | 欲望乡村(未删) | 乡村艳福 | 乡村春事 | 人妻四部曲

神探贝斯特-第69部分

快捷操作: 按键盘上方向键 ← 或 → 可快速上下翻页 按键盘上的 Enter 键可回到本书目录页 按键盘上方向键 ↑ 可回到本页顶部! 如果本书没有阅读完,想下次继续接着阅读,可使用上方 "收藏到我的浏览器" 功能 和 "加入书签" 功能!


    3。变压器

    发电端在向外输送交流电的时候,要先把交流电压升高,到了用电端,又得把送来的交流电压降低。因此,变压器是必不可少的。

    1831年,法拉第发现磁可以感应生成电,这就是变压器诞生的基础。

    1882年,英国的吉布斯获得了“照明与动力用配电方式”专利,其内容就是将变压器用于配电,当时所用的变压器是磁路开放式变压器。

    西屋引进了吉布斯的变压器,经过研究,于1885年开发出了实用的变压器。

    此外,在此前一年的1884年,英国的霍普金森制成了闭合磁路式变压器。(。。)

265 物理学之电学 5() 
4。电力设备和三相交流技术

    两相交流电是用四根电线输电的技术。德国的多勃罗沃尔斯基在绕组上想出了窍门,从绕组上每隔120度的三个地方引出抽头,得到了三相交流电。1889年,利用这种三相交流电的旋转磁场,制成了功率为100最早的三相交流电动机。

    同年,多勃罗沃尔斯基又开发出了三相四线制交流接线方式,并在1891年的法兰克福输电实验(150va三相变压器)中获得了圆满成功。

    8。电子电路元器件的历史

    当代,是包括计算机在内的电子学繁荣昌盛的时代,其背景与电子电路元器件由电子管…晶体管=集成电路的不断发展有着密切的关系。

    1。电子管

    电子管是沿着二极管…三极管…四极管…五极管的顺序发明出来的。

    二极管:前面曾经讲过,爱迪生发现了电灯泡灯丝发射电子的“爱迪生效应”。1904年,英国人弗莱明受到“爱迪生效应”的启发,发明了二极管。

    三极管:1907年,美国的福雷斯特发明了三极管。当时,真空技术尚不成熟,三极管的制造水平也不高。但在反复改进的过程中,人们懂得了三极管具有放大作用,终于拉开了电子学的帷幕。

    振荡器也从上面所讲过的马可尼火花装置发展为三极管振荡器。三极管有三个电极,阳极,阴极和设置在二者之间的控制栅极。这个控制栅极是用来控制阴极所发射的电子流的。

    四极管:1915年,英国的朗德在三极管的控制栅极与阳极之间又加了一个电极。称为帘栅极,其作用是解决三极管中流向阳极的电子流中有一部分会流到控制栅极上去的问题。

    五极管:1927年。德国的约布斯特在阳极与帘栅极之间又加了一个电极,发明了五极管。新加的电极被称为抑制栅。加入这个电极的原因是:在四极管中,电子流撞到阳极上时阳极会产生二次电子发射,抑制栅就是为抑制这种二次电子发射而设置的。

    此外,1934年美国的汤绿森通过对电子管进行小型化改进,发明了适用于超短波的橡实管。

    管壳不用玻璃而采用金属的st管发明于1937年,经小型化后的mt管发明于1939年。

    2。晶体管

    半导体器件大致分为晶体管和集成电路(ic)两大部分。第二次世界大战后,由于半导体技术的进步,电子学得到了令人瞩目的发展。

    晶体管是美国贝尔实验室的肖克莱。巴丁,布拉特在1948年发明的。

    这种晶体管的结构是使两根金属丝与低掺杂锗半导体表面接触,称为接触型晶体管。

    1949年,开发出了结型晶体管,在实用化方面前进了一大步。

    1956年开发出了制造p型和n型半导体的扩散法。它是在高温下将杂质原子渗透到半导体表层的一种方法。1960年开发出了外延生长法并制成了外延平面型晶体管。外延生长法是把硅晶体放在氢气和卤化物气体中来制造半导体的一种方法。

    有了半导体技术的这些发展,随之就诞生了集成电路。

    3。集成电路

    大约在1956年,英国的达马就从晶体管原理预想到了集成电路的出现。

    1958年美国提出了用半导体制造全部电路元器件,实现集成电路化的方案。

    1961年,得克萨斯仪器公司开始批量生产集成电路。

    集成电路并不是用一个一个电路元器件连接成的电路。而是把具有某种功能的电路“埋”在半导体晶体里的一个器件。它易于小型化和减少引线端,所以具有可靠性高的优点。

    集成电路的集成度在逐年增加。元件数在100个以下的小规模集成电路,100~1000个的中规模集成电路,1000~100000个大规模集成电路。以及100000个以上的超大规模集成电路,都已依次开发出来,并在各种装置中获得了广泛应用。

    电磁效应

    物质中的电效应是电学与其他物理学科(甚至非物理的学科)之间联系的纽带。物质中的电效应种类繁多。有许多已成为或正逐渐发展为专门的研究领域。比如:

    电致伸缩、压电效应(机械压力在电介质晶体上产生的电性和电极性)和逆压电效应、塞贝克效应、珀耳帖效应(两种不同金属或半导体接头处,当电流沿某个方向通过时放出热量。而电流反向时则吸收热量)、汤姆孙效应(一金属导体或半导体中维持温度梯度,当电流沿某方向通过时放出热量。而电流反向时则吸收热量)、热敏电阻(半导体材料中电阻随温度灵敏变化)、光敏电阻(半导体材料中电阻随光照灵敏变化)、光生伏打效应(半导体材料因光照产生电位差),等等。

    对于各种电效应的研究有助于了解物质的结构以及物质中发生的基本过程,此外在技术上,它们也是实现能量转换和非电量电测法的基础。

    电磁测量

    也是电学的组成部分。测量技术的发展与学科的理论发展有着密切的联系,理论的发展推动了测量技术的改进;测量技术的改善在新的基础上验证理论,并促成新理论的发现。

    电磁测量包括所有电磁学量的测量,以及有关的其他量(交流电的频率、相角等)的测量。利用电磁学原理已经设计制作出各种专用仪表(安培计,伏特计、欧姆计、磁场计等)和测量电路,它们可满足对各种电磁学量的测量。

    电磁测量的另一个重要的方面是非电量(长度、速度、形变、力、温度、光强、成分等)的电测量。它的主要原理是利用电磁量与非电量相互联系的某种效应,将非电量的测量转换为电磁量的测量。由于电测量有一系列优点:准确度高、量程宽、惯量小、操作简便,并可远距离遥测和实现测量技术自动化,非电量的电测量正在不断发展。

    电学相关

    电学作为经典物理学的一个分支,就其基本原理而言,已发展得相当完善,它可用来说明宏观领域内的各种电磁现象。

    20世纪,随着原子物理学、原子核物理学和粒子物理学的发展,人类的认识深入到微观领域,在带电粒子与电磁场的相互作用问题上,经典电磁理论遇到困难。虽然经典理论曾给出一些有用的结果,但是许多现象都是经典理论不能说明的。经典理论的局限性在于对带电粒子的描述忽略了其波动性方面,而对于电磁波的描述又忽略了其粒子性方面。

    按照量子物理的观点,无论是物质粒子或电磁场都既有粒子性,又具有波动性。在微观物理研究的推动下,经典电磁理论发展为量子电磁理论。(。。)

266章 物理学之量子力学 1() 
量子物理学,是为描述远离我们的日常生活经验的抽象原子世界而创立的,但它对日常生活的影响无比巨大。没有量子力学作为工具,就不可能有化学、生物、医学以及其他每一个关键学科的引人入胜的进展。没有量子力学就没有全球经济可言,因为作为量子力学的产物的电子学革命将我们带入了计算机时代。同时,光子学的革命也将我们带入信息时代。量子物理的杰作改变了我们的世界,科学革命为这个世界带来了的福音,也带来了潜在的威胁。

    量子物理学是人们研究微观世界的理论,也有人称为研究量子现象的物理学。由于宏观物体是由微观世界建构而成的,因此量子物理学不仅是研究微观世界结构的工具,而且在深入研究宏观物体的微结构和特殊的物理性质中也发挥着巨大作用。我们把科学家们在研究原子、分子、原子核、基本粒子时所观察到的关于微观世界的系列特殊的物理现象称为量子现象。

    量子世界除了其线度极其微小之外(10…10~10…15m量级),另一个主要特征是它们所涉及的许多宏观世界所对应的物理量往往不能取连续变化的值,(如:坐标、动量、能量、角动量、自旋),甚至取值不确定。许多实验事实表明,量子世界满足的物理规律不再是经典的牛顿力学,而是量子物理学。

    建立

    量子物理学是在20世纪初,物理学家们在研究微观世界(原子、分子、原子核…)的结构和运动规律的过程中,逐步建立起来的。

    量子概念是1900年普朗克首先提出的。期间,经过玻尔、德布罗意、玻恩、海森柏、薛定谔、狄拉克、爱因斯坦等许多物理大师的创新努力。到20世纪30年代,初步建立了一套完整的量子力学理论。

    基本特征

    尽管量子力学是为描述远离我们的日常生活经验的抽象原子世界而创立的。但它对日常生活的影响无比巨大。没有量子力学作为工具,就不可能有化学、生物、医学以及其他每一个关键学科的引人入胜的进展。没有量子力学就没有全球经济可言,因为作为量子力学的产物的电子学革命将我们带入了计算机时代。同时,光子学的革命也将我们带入信息时代。量子物理的杰作改变了我们的世界,科学革命为这个世界带来了的福音,也带来了潜在的威胁。

    独特地位:量子理论是科学史上能最精确地被实验检验的理论,是科学史上最成功的理论。量子力学深深地困扰了它的创立者,然而,直到它本质上被表述成通用形式的今天。一些科学界的精英们尽管承认它强大的威力,却仍然对它的基础和基本阐释不满意。

    马克斯。普朗克(maxpnck)提出量子概念100多年了,在他关于热辐射的经典论文中,普朗克假定振动系统的总能量不能连续改变,而是以不连续的能量子形式从一个值跳到另一个值。能量子的概念太激进了,普朗克后来将它搁置下来。随后,爱因斯坦在1905年(这一年对他来说是非凡的一年)认识到光量子化的潜在意义。不过量子的观念太离奇了,后来几乎没有根本性的进展。现代量子理论的创立则是崭新的一代物理学家花了20多年时间建立的。

    内容

    量子物理实际上包含两个方面。一个是原子层次的物质理论:量子力学,正是它我们才能理解和操纵物质世界;另一个是量子场论。它在科学中起到一个完全不同的作用。

    旧量子论

    量子革命的导火线不是对物质的研究,而是辐射问题。具体的挑战是理解黑体(即某种热的物体)辐射的光谱。烤过火的人都很熟悉这样一种现象:热的物体发光,越热发出的光越明亮。光谱的范围很广,当温度升高时。光谱的峰值从红线向黄线移动,然后又向蓝线移动(这些不是我们能直接看见的)。结合热力学和电磁学的概念似乎可以对光谱的形状作出解释,不过所有的尝试均以
返回目录 上一页 下一页 回到顶部 3 2
快捷操作: 按键盘上方向键 ← 或 → 可快速上下翻页 按键盘上的 Enter 键可回到本书目录页 按键盘上方向键 ↑ 可回到本页顶部!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!