友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!
29书城 返回本书目录 加入书签 我的书架 我的书签 TXT全本下载 『收藏到我的浏览器』
我的美母教师 | 乡村精品合集 | 乡村活寡 | 乡村欲爱 | 乡村春潮 | 乡村花医 | 欲望乡村(未删) | 乡村艳福 | 乡村春事 | 人妻四部曲

神探贝斯特-第85部分

快捷操作: 按键盘上方向键 ← 或 → 可快速上下翻页 按键盘上的 Enter 键可回到本书目录页 按键盘上方向键 ↑ 可回到本页顶部! 如果本书没有阅读完,想下次继续接着阅读,可使用上方 "收藏到我的浏览器" 功能 和 "加入书签" 功能!

电能。法拉第电磁感应定律是反映外界做功能力的,磁通量的变化率越大,感应电动势越大,外界做功的能力也越大。

    二是电路及力学知识。主要讨论电能在电路中传输、分配,并通过用电器转化成其他形式能的特点规律。在实际应用中常常用到电路的三个规律(欧姆定律、电阻定律和焦耳定律)和力学中的牛顿定律、动量定理、动量守恒定律、动能定理和能量守恒定律等概念。

    三是右手定则。右手平展。使大拇指与其余四指垂直,并且都跟手掌在一个平面内。把右手放入磁场中。若磁力线垂直进入手心(当磁感线为直线时,相当于手心面向n极)。大拇指指向导线运动方向,则四指所指方向为导线中感应电流的方向。

    电磁学中,右手定则判断的主要是与力无关的方向。为了方便记忆,并与左手定则区分,可以记忆成:左力右电(即左手定则判断力的方向,右手定则判断电流的方向)。

    感应电动势的正负极可利用感应电流方向判定{电源内部的电流方向:由负极流向正极}

    重要实验折叠

    在一个空心纸筒上绕上一组和电流计联接的导体线圈,当磁棒插进线圈的过程中,电流计的指针发生了偏转,而在磁棒从线圈内抽出的过程中。电流计的指针则发生反方向的偏转,磁棒插进或抽出线圈的速度越快,电流计偏转的角度越大。但是当磁棒不动时,电流计的指针不会偏转。

    对于线圈来说,运动的磁棒意味着它周围的磁场发生了变化,从而使线圈感生出电流。法拉第终于实现了他多年的梦想——用磁的运动产生电! 奥斯特和法拉第的发现,深刻地揭示了一组极其美妙的物理对称性:运动的电产生磁,运动的磁产生电。

    不仅磁棒与线圈的相对运动可以使线圈出现感应电流,一个线圈中的电流发生了变化。也可以使另一个线圈出现感应电流。

    将线圈通过开关k与电源连接起来,在开关k合上或断开的过程中,线圈2就会出现感应电流。 如果将与线圈1连接的直流电源改成交变电源,即给线圈1提供交变电流。也引起线圈出现感应电流。 这同样是因为,线圈1的电流变化导致线圈2周围的磁场发生了变化。

    相关定律折叠

    电磁感应定律折叠

    因磁通量变化产生感应电动势的现象,闭合电路的一部分导体在磁场里做切割磁感线的运动时。导体中就会产生电流,这种现象叫电磁感应。闭合电路的一部分导体在磁场中做切割磁感线运动。导体中就会产生电流。这种现象叫电磁感应现象。产生的电流称为感应电流。这是初中物理课本为便于学生理解所定义的电磁感应现象,不能全面概括电磁感现象:闭合线圈面积不变。改变磁场强度,磁通量也会改变,也会发生电磁感应现象。所以准确的定义如下: 因磁通量变化产生感应电动势的现象。

    法拉第定律折叠

    有些物理学家注意到法拉第定律是一条描述两种现象的方程式:由磁力在移动中的电线中产生的运动电动势,及由磁场转变而成的电力所产生的感应电动势。就像理查德。费曼指出的那样:

    所以“通量定则”,指出电路中电动势等于通过电路的磁通量变化率的,同样适用于通量不变化的时候,这是因为场有变化,或是因为电路移动(或两者皆是)……但是在我们对定则的解释里,我们用了两个属于完全不同个案的定律:“电路运动”的和“场变化”的。

    我们不知道在物理学上还有其他地方,可以用到一条如此简单且准确的通用原理,来明白及分析两个不同的现象。

    – 理查德。p。费曼《费曼物理学讲义》

    格里夫斯的书中也有类似陈述。

    感应电流折叠

    产生的条件

    1。电路是闭合且通的。2。穿过闭合电路的磁通量发生变化。

    3。电路的一部分在磁场中做切割磁感线运动(切割磁感线运动就是为了保证闭合电路的磁通量发生改变)(如果缺少一个条件,就不会有感应电流产生)。。

    电磁感应现象中之所以强调闭合电路的“一部分导体”,是因为当整个闭合电路切割磁感线时,左右两边产生的感应电流方向分别为逆时针和顺时针,对于整个电路来讲电流抵消了。

    电磁感应中的能量关系。

    电磁感应是一个能量转换过程,例如可以将重力势能,动能等转化为电能,热能等。

    科技应用折叠

    动圈式话筒的原理折叠

    在剧场里,为了使观众能听清演员的声音,常常需要把声音放大,放大声音的装置主要包括话筒,扩音器和扬声器三部分。话筒是把声音转变为电信号的装置。图2是动圈式话筒构造原理图,它是利用电磁感应现象制成的,当声波使金属膜片振动时,连接在膜片上的线圈(叫做音圈)随着一起振动,音圈在永久磁铁的磁场里振动,其中就产生感应电流(电信号),感应电流的大小和方向都变化,变化的振幅和频率由声波决定,这个信号电流经扩音器放大后传给扬声器,从扬声器中就发出放大的声音。(。。)

294 电磁感应器 4() 
磁带录音机的原理折叠

    磁带录音机主要由机内话筒、磁带、录放磁头、放大电路、扬声器、传动机构等部分组成,是录音机的录、放原理示意图。录音时,声音使话筒中产生随声音而变化的感应电流——音频电流,音频电流经放大电路放大后,进入录音磁头的线圈中,在磁头的缝隙处产生随音频电流变化的磁场。磁带紧贴着磁头缝隙移动,磁带上的磁粉层被磁化,在磁带上就记录下声音的磁信号。

    放音是录音的逆过程,放音时,磁带紧贴着放音磁头的缝隙通过,磁带上变化的磁场使放音磁头线圈中产生感应电流,感应电流的变化跟记录下的磁信号相同,所以线圈中产生的是音频电流,这个电流经放大电路放大后,送到扬声器,扬声器把音频电流还原成声音。

    在录音机里,录、放两种功能是合用一个磁头完成的,录音时磁头与话筒相连;放音时磁头与扬声器相连。

    汽车车速表折叠

    汽车驾驶室内的车速表是指示汽车行驶速度的仪表。它是利用电磁感应原理,使表盘上指针的摆角与汽车的行驶速度成正比。车速表主要由驱动轴、磁铁、速度盘,弹簧游丝、指针轴、指针组成。其中永久磁铁与驱动轴相连。在表壳上装有刻度为公里/小时的表盘。

    永久磁铁的磁感线方向如图1所示。其中一部分磁感线将通过速度盘,磁感线在速度盘上的分布是不均匀的,越接近磁极的地方磁感线数目越多。当驱动轴带动永久磁铁转动时。则通过速度盘上各部分的磁感线将依次变化,顺着磁铁转动的前方。磁感线的数目逐渐增加,而后方则逐渐减少。由法拉第电磁感应原理知道。通过导体的磁感线数目发生变化时,在导体内部会产生感应电流。又由楞次定律知道,感应电流也要产生磁场,其磁感线的方向是阻碍(非阻止)原来磁场的变化。用楞次定律判断出,顺着磁铁转动的前方,感应电流产生的磁感线与磁铁产生的磁感线方向相反,因此它们之间互相排斥;反之后方感应电流产生的磁感线方向与磁铁产生的磁感线方向相同,因此它们之间相互吸引。由于这种吸引作用,速度盘被磁铁带着转动。同时轴及指针也随之一起转动。

    为了使指针能根据不同车速停留在不同位置上,在指针轴上装有弹簧游丝,游丝的另一端固定在铁壳的架上。当速度盘转过一定角度时,游丝被扭转产生相反的力矩,当它与永久磁铁带动速度盘的力矩相等时,则速度盘停留在那个位置而处于平衡状态。这时,指针轴上的指针便指示出相应的车速数值。

    永久磁铁转动的速度和汽车行驶速度成正比。当汽车行驶速度增大时,在速度盘中感应的电流及相应的带动速度盘转动的力矩将按比例地增加,使指针转过更大的角度。因此车速不同指针指出的车速值也相应不同。当汽车停止行驶时,磁铁停转,弹簧游丝使指针轴复位,从而使指针指在“0”处。

    熔炼金属折叠

    交流的磁场在金属内感应的涡流能产生热效应。这种加热方法与用燃料加热相比有很多优点,除课本所述外还有:加热效率高,达到50~90%;加热速度快;用不同频率的交流可得到不同的加热深度。这是因为涡流在金属内不是均匀分布的,越靠近金属表面层电流越强。频率越高这种现象越显著,称为“趋肤效应”。工业上把感应加热依频率分为四种:工频(50赫);中频(0。5~8千赫);超音频(20~60千赫);高频(60~600千赫)。工频交流直接由配电变压器提供;中频交变电流由三相电动机带动中频发电机或用可控硅逆变器产生;超音频和高频交流由大功率电子管振荡器产生。

    无心式感应熔炉的用途是熔炼铸铁、钢、合金钢和铜、铝等有色金属。所用交流的频率要随坩锅能容纳的金属质量多少来选择。以取得最好的效果。例如:5千克的用20千赫,100千克的用2。5千赫,5吨的用1千赫以至50千赫。

    冶炼锅内装入被冶炼的金属,让高频交变电流通过线圈,被冶炼的金属中就产生很强的涡流,从而产生大量的热使金属熔化这种冶炼方法速度快,温度容易控制,能避免有害杂质混入被冶炼的金属中,适于冶炼特种合金和特种钢。

    感应加热法也广泛用于钢件的热处理,如淬火、回火、表面渗碳等,例如齿轮、轴等只需要将表面淬火提高硬度、增加耐磨性,可以把它放入通有高频交流的空心线圈中,表面层在几秒钟内就可上升到淬火需要的高温,颜色通红,而其内部温度升高很少,然后用水或其他淬火剂迅速冷却就可以了,其他的热处理工艺,可根据需要的加热深度选用中频或工频等。

    历史渊源折叠

    法拉第定律最初是一条基于观察的实验定律。后来被正式化,其偏导数的限制版本,跟其他的电磁学定律一块被列麦克斯韦方程组的现代亥维赛版本。

    法拉第电磁感应定律是基于法拉第于1831年所作的实验。这个效应被约瑟。亨利于大约同时发现,但法拉第的发表时间较早。

    见麦克斯韦讨论电动势的原著。

    于1834年由波罗的海德国科学家海因里希。楞次发现的楞次定律,提供了感应电动势的方向,及生成感应电动势的电流方向。

    重要意义折叠

    法拉第的实验表明,不论用什么方法,只要穿过闭合电路的磁通量发生变化,闭合电路中就有电流产生。这种现象称为电磁感应现象,所产生的电流称为感应电流。

    法拉第根据大量实验事实总结出了如下定律:电路中感应电动势的大小,跟穿过这一电路的磁通变化率成正比。

    感应电动势用e表示,即e=nΔΦ/Δt这就是法拉第电磁感应定律。

    电磁感应现象是电磁学中最重大的发现之一,它揭示了电、磁现象之间的相互联系。法拉第电磁感应定律的重要意义在于,一方面,依据电磁感应的原理,人们制造出了发电机,电能的大规模生产和远距离输送成为可
返回目录 上一页 下一页 回到顶部 3 2
快捷操作: 按键盘上方向键 ← 或 → 可快速上下翻页 按键盘上的 Enter 键可回到本书目录页 按键盘上方向键 ↑ 可回到本页顶部!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!