友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!
29书城 返回本书目录 加入书签 我的书架 我的书签 TXT全本下载 『收藏到我的浏览器』
我的美母教师 | 乡村精品合集 | 乡村活寡 | 乡村欲爱 | 乡村春潮 | 乡村花医 | 欲望乡村(未删) | 乡村艳福 | 乡村春事 | 人妻四部曲

清史稿-第1176部分

快捷操作: 按键盘上方向键 ← 或 → 可快速上下翻页 按键盘上的 Enter 键可回到本书目录页 按键盘上方向键 ↑ 可回到本页顶部! 如果本书没有阅读完,想下次继续接着阅读,可使用上方 "收藏到我的浏览器" 功能 和 "加入书签" 功能!

靡皇酰篡煌⑾垅胖钚危嗫晌挣茫闶踔卦恳病N鞣ń韪绞翟洞耍艘远嗌俅海接谄湎≈!2恢阂员鹨焱嗌僖苑钟瘱H,毫釐千里,必有能辨之者。”

又著游艺录二卷,自识云:“余於正、负开方之例,既为释例以明其法矣。至於衰分方程、句股等法,以及九章所未载,与夫古今算术之未能该洽者,辄为溯其源,正其误。不敢掠前哲之美以为名,亦不为黯黮之词以欺世也。随所见而识之,汇为一编。”遗稿凡十馀万言,即今传本也。

南汇张文虎尝与青浦熊户部其光书论之曰:“承示骆司训算书二种,读竟奉缴。李四香开方说,详於超步、商除、翻积、益积诸例,而不言立法之根,令初学者茫不解其所谓。骆氏於诸乘方、方廉、和较、加减之理,皆质言之,而推求各元进退、定商诸术,尤足补李书所未备,诚学开方者之金锁匙。汪孝婴创设两句股同积同句股和一问,以两句弦较中率转求两句弦较,立术迂回。骆氏以正、负开方径求得两句,颇为简易。衡斋亦当首肯也。”其为人所推服如此。

项名达,字梅侣,仁和人。嘉庆二十一年举人,考授国子监学正。道光六年,成进士,改官知县,不就,退而专攻算学。三十年,卒于家,年六十有二。著述甚富,今传世者,但有下学庵句股六术及图解,复附句股形边角相求法三十二题,合为一卷。以句股和较相求诸题术稍繁难,爰取旧术稍为变通。分术为六,使题之相同者通为一术,釐然悉有以御之。第一、二、三术及第四术之前二题,悉本旧解,馀为更定新术,皆别注捷法,各为图解,以明其意。第四、五、六术其原皆出於第三术,可释之以比例。第三术以句弦较比股,若股与句弦和,以股弦较比句,若句与股弦和,是为三率连比例。凡有比例加减之,其和较亦可互相比例。故第四、五、六术诸题,皆可由第三术之题加减而得,即可因第三术之比例而另生比例。因比例以成同积,而诸术开方之所以然遂明。名达又创有弧三角总较术,求橢员弧线术,术定,未有诠释,以义奥趣幽,难猝竟事,故六术独先成云。

名达与乌程陈杰、钱塘戴煦契最深,晚年诣益精进,谓古法无用,不甚涉猎,而专意于平弧三角,与杰意不谋而合。与杰论平三角,名达曰:“平三角二边夹一角,迳求斜角对边,向无其法,窃尝拟而得之,君闻之乎?”杰曰:“未也。”录其法以归。盖以甲乙边自乘与甲丙边自乘相加,得数寄左;乃以半径为一率,甲角馀弦为二率,甲乙、甲丙两边相乘倍之为三率,求得四率,与寄左数相减,钝角则相加,平方开之,得数即乙丙边。

又尝谓泰西杜德美之割圜九术,理精法妙,其原本于三角堆,董方立定四术以明之,洵为卓见。惟求倍分弧,有奇无偶,徐有壬补之,庶几详备。名达尝玩三角堆,叹其数祗一递加,而理法象数,包蕴无穷,夫方圜之率不相通,通方圜者必以尖,句股,尖象也;三角堆,尖数也。古法用半径屡求句股得圜周,不胜其繁。杜氏则以三角堆御连比例诸率,而弧弦可以互通,割圜术蔑以加矣。然以此制八线全表,每求一数,必乘除两次,所用弧线,位多而乘不便,董、徐二氏大、小弧相求法亦然。向思别立简易法,因从三角堆整数中推出零数,但用半径,即可任求几度分秒之正馀弦,不烦取资于弧线及他弧弦矢。且每一乘除,便得一数,似可为制表之一助。

又著象数原始一书,未竟,疾革时,嘱戴煦。后煦索稿於名达子锦标,校算增订六阅月而稿始定,都为七卷。原书之四,仅六纸,并第七卷皆煦所补也。卷一曰整分起度弦矢率论,卷二曰半分起度弦矢率论,卷三、卷四曰零分起度弦矢率论,皆以两等边三角形明其象,递加法定其数,末乃申论其算法。卷五曰诸术通诠,取新立弧弦矢求他弧弦矢二术、半径求弦矢二术及杜、董诸术,按术诠释之。卷六曰诸术明变,杂列所定弦矢求八线术,开诸乘方捷术,算律管新术,橢员求周术,以明皆从递加数转变而得。卷七曰橢员求周图解,原术以袤为径,求大员周及周较,相减而得周,补术则以广为径,求小员周,周较相加而得周,末系以图解。徐有壬巡抚江苏,邮书索煦写定本梓行,刻甫就而有壬殉难,书与板皆毁焉。

有王大有者,字吉甫,仁和诸生。翰林院待诏。穷究天算,问业於处士戴煦。凡煦所著述,皆录副本去,名达见之,因与煦订交。大有尝校割圜捷术合编。后殉於杭州。

丁取忠,字果臣,长沙人。研究象数,不求闻达,刻算书二十有一种,为白芙堂丛书。光绪初,卒于家,年逾七十。所自譔者为数学拾遗一卷,以所演算草较详,可便初学,又意在拾遗,故未暇详其义之出自何人。

又譔粟布演草二卷,自序曰:“道光壬辰,余始习算,友人罗寅交学博洪宾以难题见询,久无以应。同治初元,始获交南丰吴君子登太史,驭以开屡乘方法,余始通其术,然未悉其立法之根也。后吴君游岭表,余推之他题,及展转相求,仍多窒碍。又函询李君壬叔,蒙示以廉法表及求总率二术,而其理始显。后吴君又示以指数表及开方式表,李君复为之图解以阐其义。由是三事互求,理归一贯。余因取数题详为演草,并捷法图解,都为一卷。质之南海邹君特夫,君复为增订开屡乘方法,并另设题演草,补所未备。即算家至精之理,如圜内容各等边形,皆可借发商生息以明之,诚快事也!”

后又譔演草补一篇,序云:“余前年与左君壬叟共辑粟布演草,原为商贾之习算者设,或一例而演数题,或一题而更数式。或用真数,或用代数。其式或横列,或直下,杂然并陈,无非欲学者比类参观,易於领悟也。乃初学习之,犹谓茫无入门处,盖商贾所习算书,大都详於文而略於式。况代数又古算术所无,宜其卒然览之而不解也。兹更拟一题附后,特仿数理精蕴借根方体例,专详於文,庶初学读之,可因文知义。算理既明,则全书各式,可涣然冰释,或兼可为习代数者之先导乎?”其乡人李锡蕃,亦以演算名。

锡蕃,字晋夫。道光三十年早卒,著有借根方句股细草一卷,衍为二十有五术,取忠刊入丛书。

谢家禾,字和甫,钱塘举人。与同学戴氏兄弟熙、煦相友善。少嗜西学,点线面体四部,靡不淹贯。已,复取元初诸家算书,幽探冥索,悉其秘奥。乃辑平时所得析通分加减,定方程正负,以标举立元大耍,撰演元耍义一卷。其自序云:“元学至精且邃,而求其要领,无过通分加减,凡四元之分正负,及相消法,互隐通分法,大致原於方程。方程者,即通分之义。方程不明,由於正负无定例,加减无定行,以譌传譌,如梅宣城精研数理,未暇深究,他书可知矣。九章算经正负术甚明,而释者反以意度,古谊之不明,可胜道哉!唯以衍元之法正方程之义,由是方程明而元学亦明。著演元要义,综通分方程而论列之,附以连枝同体之分等法。通乎此,则四元庶可窥其涯涘耳。”

又以刘徽、祖冲之之率求弧田,求其密於古率者,撰弧田问率一卷。同里戴煦为之序曰:“古率径一周三,徽率刘徽所定,径五十周一百五十七也。密率乃祖冲之简率,径七周二十二也。诸书弧田术皆用古率,郭太史以二至相距四十八度,求矢亦用古法。顾徽、密二率之周既盈於古,则积亦盈於古,试设同径之圆,旁割四弧,其中两弦相得之方三率皆同,知三率圆积之盈缩,正三率弧积之盈缩也。徽、密二率弧田古无其术,惟四元玉鉴一睹其名,而设问隐晦,莫可端倪。穀堂得其旨,因依李尚之孤矢算术细草设问立术,亦足发前人所未发也。”

又以直横与句股弦和较展转相求,撰直积回求一卷,其自序云:“始戴谔士著句股和较集成,予亦著直积与和较求句股弦之书,然二书为义尚浅,且直积与句弦和求三事,用立方三乘方等,得数不易,而又不足以为率,其书遂不存。近见四元玉鉴直积与和较回求之法,多立二元,尝与谔士思其义蕴,有不必用二元者。盖以句弦较与句弦和相乘为股冪,股弦和与股弦较相乘为句冪,而直积自乘,即句冪股冪相乘也。如以句弦较乘股弦较冪,除直积冪,即为句弦和乘股弦和冪矣。句弦和乘股弦和冪,即弦冪和冪共内少半个黄方冪也。盖相乘冪内去一弦冪,所馀为句股相乘者一,句弦相乘者一,股弦相乘者一,此三冪合成和冪,则少一半黄方冪。半黄方冪,即句弦较股弦较相乘冪也。加一半黄方冪,即为弦冪和冪共矣。加二直积,即二和冪也。减六直积,即二较冪也。又句弦和乘股弦较冪,为句冪内少个句股较乘股弦较冪也。股弦和乘句弦较冪,为股冪内多个句股较乘句弦较冪也。减一句股较乘股弦较冪,尚馀一句股较冪矣。术中精意,皆出於此。其他之参用常法者,可不解而自明耳。草中既未暇论,恐习者不知其理,因揭其大旨於简端,见演段之不可不精也。”

家禾殁后,戴熙搜遗稿,嘱其弟煦校雠而授诸梓。煦精算,见忠义传。著有补重差图说,句股和较集成消法简易图解,对数简法,外切密率,假数测圆,及船机图说等。

吴嘉善,字子登,南丰人。咸丰十一年进士,改翰林院庶吉士,散馆授编修。与徐有壬同治算学。同治改元,避粤匪乱游长沙,识丁取忠。逾年,客广州,因邹伯奇又识钱塘夏鸾翔。三人志同道合,相得益彰。光绪五年,奉使法兰西,驻巴黎。后受代还,旋卒。

所譔算书,首述笔算。次九章翼,曰今有术,曰分法,曰开方,曰平方平员各术。推演方田者,曰立方立员术,推演商功者,曰句股,曰衰分术,曰盈不足术,曰方程术。於句股术后,次附平三角、弧三角测量高远之术。又次则专述天元四元之书,为天元一术释例,为名式释例,为天元一草,为天元问答,为方程天元合释,为四元名式释例并草,为四元浅释。自序曰:“算学至今日,可谓盛矣。古义既彰,新法日出,前此所未有也。余与丁君果臣皆癖此,既忘其癖,更欲以癖导人。尝苦近世津逮初学之书无善本,梅文穆公所删之算法统宗,今亦不传。因商榷述此,取其浅近易晓,以为升高行远之助云。”

罗士琳,字茗香,甘泉人。以监生循例贡太学,尝考取天文生。咸丰元年,恩诏徵举孝廉方正之士,郡县交荐,以老病辞。三年春,粤匪陷扬州,死之,年垂七十矣。少治经,从其舅江都秦太史恩复受举业,已乃弃去,专力步算,博览畴人书,日夕研求数年。

初精西法,自譔言历法者曰宪法一隅。又思句股、少广相表里,而方田与商功无异,差分与均输不殊。按类相从,摘九章中之切于日用者,悉以比例驭之,汇为十二种。以各定率冠首,以借根方继后,以诸乘方开法附末,凡四卷,曰比例汇通,虽悔其少作,实便初学问途。

后见四元玉鉴,服膺叹绝,遂壹意专精四元之术。士琳博文强识,兼综百家,於古今算法尤具神解,以硃氏此书实集算学大成,思通行发明,乃殚精一纪,步为全草,并有原书於率不通及步算传写之譌,悉为标出,补
返回目录 上一页 下一页 回到顶部 1 0
快捷操作: 按键盘上方向键 ← 或 → 可快速上下翻页 按键盘上的 Enter 键可回到本书目录页 按键盘上方向键 ↑ 可回到本页顶部!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!